Соотношение крутящего момента и мощности электродвигателя

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Соотношение крутящего момента и мощности электродвигателя». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

Как только он обращается в суд, должен прекратить начисление заемщику штрафов и пеней. Важно обратиться напрямую к неплательщику управляющая компания может уже через три пропущенных срока оплаты, но для обращения в суд должно накопиться не менее 6 неоплаченных счетов. Обязательным требованием такого договора является утверждение правомерности соглашения судьёй.

Eurocode Tuning Russia › Блог › Крутящий момент или мощность – развеиваем мифы

Крутящий момент или мощность – развеиваем мифы.

Приветствуем всех автолюбителей! Ни раз многие из нас сталкивались со спорами что же важнее мощность или крутящий момент. Кто то даже приводит высказывание якобы Генри Форда: «Лошадиные силы продают автомобиль, а крутящий момент выигрывает гонки» Кто то говорит, что крутящий момент влияет на разгон, а мощность на максимальную скорость, а некоторые наоборот считают, что исключительно мощность важна.
В этой статье мы максимально подробно и досконально разберем все аспекты, раз и на всегда закроем десятки мифов и домыслов.

Что такое крутящий момент?
Это произведение силы на плечо рычага, к которому она приложена. Сила измеряется в Ньютонах, а плечо рычага в метрах – Нм. 1 Нм равняется силе в 1 Ньютон, которая приложена к рычагу в 1 метр. 1 килограмм силы (1кгс) равен 9.8 Н.

Нужно понимать, что крутящий момент развивает все, что крутится и к нему прикладывается сила: Вы закручиваете гайки на колесе – наступая на гаечный ключ длинной 40 см (0.4 метра) всем телом 80 кг — создаете крутящий момент 0.4*80=32кг*м или 313.6 Нм.

Велосипедист весом 90кг, давящий всем весом на педаль с рычагом 35 см, развивает 0.35*90 = 31,5 кг*м = 308,7 Нм – Да да, крутящий момент велосипедиста – 300Нм! Как у трехлитрового атмосферного мотора!

Но, прежде чем дать понятие мощности, нужно еще ввести одну переменную – обороты в минуту.
Вернемся к велосипедисту и его 300Нм крутящего момента. Нам нужно понять на каких оборотах он может поддерживать этот момент. Как правило это около 1 вращения педалей в секунду. То есть 60 об/мин. Значит 300Нм при 60 об/мин.

Так же и многие производители указывают характеристики своих ДВС – например 250Нм при 4000об/мин. Но теперь становится не понятно — какой двигатель будет быстрее разгонять автомобиль: у которого 250Нм при 4000 об/мин или у которого 200Нм при 6000 об/мин. Как сравнить?

Очень просто — достаточно привести обороты коленчатого вала к одному знаменателю с помощью редуктора:

250Нм при 4000 об/мин, ставим понижающий вдвое редуктор и получаем 500Нм при 2000 об/мин (обороты понижаются вдвое, крутящий момент возрастает вдвоем, потерей на редукторе пренебрегаем)

200Нм при 6000 об/мин, ставим понижающий втрое редуктор и получаем 600Нм при 2000 Об/мин. Теперь четко можно сравнить эти два мотора:

250Нм при 4000 об/мин — > 500Нм при 2000 об/мин
200Нм при 6000 об/мин — > 600Нм при 2000 об/мин

то есть второй мотор на 20% «мощнее» первого, что на первый взгляд далеко не очевидно. Но не дело же каждый раз заниматься подбором «редукторов», чтобы честно сравнить крутящий момент моторов. Чтобы этим не заниматься и придумали понятие мощности для ДВС.

Итак, мощность для ДВС — это крутящий момент, умноженный на обороты, на которых он достигается, деленный на константу 9550. Результат мы получаем в киловаттах. Для того чтобы сразу получать результат в лошадиных силах нужно 9550 разделить на 1.36 – 7022. Или P(л.с.)=M(Нм)*N(об/мин)/7022.

Посчитаем сразу мощность велосипедиста:
(300Нм*60об/мин)/7022 = 2,56 лошадиные силы при 60 об/мин. Не густо. На деле еще меньше, потому что давить педали полным весом с частотой 1 об/мин не так просто)

Вернемся к нашим ДВС:
250Нм при 4000 об/мин – (250*4000)/7022 = 142.2 л.с.
200Нм при 6000 об/ мин – (200*6000)/7022 = 170.8 лс.

Это означает, что двигатель с бОльшей максимальной мощностью будет иметь и бОльший крутящий момент, при уравнивании частоты вращения выходного вала. Это аксиома.

Для закрепления приведем пример дизельного двигателя трактора (700Нм при 1300об/мин) и мотоцикла (110Нм при 13000об/мин):
(700Нм*1300 об/мин)/7022 = 129.5 л.с. — трактор
(110Нм*13000 об/мин)/7022 = 203 л.с. — мотоцикл.

На всякий случай проверим с помощью старой схемы с редукторами — поставим понижающий в 10 раз редуктор на мотоцикл — 110Нм при 13000об/мин превратятся в 1100Нм при 1300об/мин — крутящий будет гораздо больше чем у трактора. И да двигатель мотоцикла будет тянуть бОльший груз и быстрее разгонять трактор если его туда поставить.

Тут возникает вопрос – если у ДВС максимальный крутящий момент скажем 200Нм при 5000об/мин, почему тогда максимальная мощность аж на 6400 об/мин, а не при тех же 4500 об/мин?

А все потому, что обороты выросли на 20%, а крутящий момент упал на 5%, как итог мощность выросла на 14%.

А если мы пойдем еще дальше: например сдвинемся еще на 10% оборотов – 6600, а крутящий момент упадет на 12% — до 167 Нм, тогда получим – 167*6600/7022 = 157.1 л.с Именно поэтому повторимся: максимальная мощность растет до тех пор, пока крутящий момент падает медленнее чем растут обороты.

Отсюда следует, что точку максимальной мощности можно так же назвать точкой максимального приведенного крутящего момента, именно в этой точке будет максимальный крутящий момент у мотора на выходном валу.

Так же отсюда следует, что крутящий момент – величина относительная, и не подлежит сравнению между собой на прямую, в то время как мощность – абсолютная и 150 л.с. при 6000 об/мин, это тоже самое что 150 лс при 3500 об/мин.

Сразу же можно дать ответ на вопрос – почему вариаторные коробки передач в режиме максимального разгона всегда держат обороты в районе максимальной мощности, а не, например максимального крутящего момента. Ответ прост и написан выше – потому, что именно в этой точке, на колесах будет максимальный крутящий момент при заданной скорости, для обеспечения максимального ускорения.

Поэтому когда вам говорят у меня 150 сил и «аж 400 момента», не пугайтесь, это просто дизель, у которого момент на очень низких оборотах. Эксплуатировать такой автомобиль в условиях города очень комфортно, НО именно мощность выигрывает гонки, мощность разгоняет автомобиль и от мощности зависит максимальная скорость 😉

Источник: https://www.drive2.ru/o/b/548898745647891511/

Мощность и вращающий момент электродвигателя. Что это такое?

Мощность и вращающий момент электродвигателя

Данная глава посвящена вращающему моменту: что это такое, для чего он нужен и др. Мы также разберём типы нагрузок в зависимости от моделей насосов и соответствие между электродвигателем и нагрузкой насоса.

Вы когда-нибудь пробовали провернуть вал пустого насоса руками? Теперь представьте, что вы поворачиваете его, когда насос заполнен водой. Вы почувствуете, что в этом случае, чтобы создать вращающий момент, требуется гораздо большее усилие.

А теперь представьте, что вам надо крутить вал насоса несколько часов подряд. Вы бы устали быстрее, если бы насос был заполнен водой, и почувствовали бы, что потратили намного больше сил за тот же период времени, чем при выполнении тех же манипуляций с пустым насосом. Ваши наблюдения абсолютно верны: требуется большая мощность, которая является мерой работы (потраченной энергии) в единицу времени. Как правило, мощность стандартного электродвигателя выражается в кВт.

Вращающий момент (T) — это произведение силы на плечо силы. В Европе он измеряется в Ньютонах на метр (Нм).

Как видно из формулы, вращающий момент увеличивается, если возрастает сила или плечо силы — или и то и другое. Например, если мы приложим к валу силу в 10 Н, эквивалентную 1 кг, при длине рычага (плече силы) 1 м, в результате, вращающий момент будет 10 Нм. При увеличении силы до 20 Н или 2 кг, вращающий момент будет 20 Нм. Таким же образом, вращающий момент был бы 20 Нм, если бы рычаг увеличился до 2 м, а сила составляла 10 Н. Или при вращающем моменте в 10 Нм с плечом силы 0,5 м сила должна быть 20 Н.

Работа и мощность

Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила — любая сила — вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.

Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).

Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.

Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.

Приведем единицы измерения к общему виду.

Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.

Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.

Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.

Как образуется вращающий момент и частота вращения?

Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.

В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.

Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.

Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:

Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.

Потребляемая мощность электродвигателя

Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.

В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).

Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 • 0,746) = 14,92 кВт.

И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.

Момент электродвигателя

Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.

Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.

Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.

Графическое представление вращающего момента электродвигателя изображено на рисунке.

Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.

Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.

Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.

Блокировочный момент (Мблок): Максимальный вращающий момент — момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.

Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.

Постоянный вращающий момент

Как видно из названия — «постоянный вращающий момент» — подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.

Переменный вращающий момент и мощность

«Переменный вращающий момент» — эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.

Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.

На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения — мал, а потребный вращающий момент при высокой частоте вращения — велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность — кубу скорости вращения.

Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.

В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.

Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.

Если мы посмотрим на характеристику , то увидим, что при ускорении электродвигателя его пуск производится при токе, соответствующем 550% тока полной нагрузки.

Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.

Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.

Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.

Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.

Время пуска электрдвигателя

Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.

Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:

tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке

n = частота вращения электродвигателя при полной нагрузке

Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.

Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.

Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.

Мизб можно рассчитать по следующим формулам:

Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.

Число пусков электродвигателя в час

Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.

Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.

Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.

При производстве насосов используются следующие обозначения этих трёх различных типов мощности.

P1 (кВт) Входная электрическая мощность насосов — это мощность, которую электродвигатель насоса получает от источника электрического питания. Мощность P! равна мощности P2, разделённой на КПД электродвигателя.

P2 (кВт) Мощность на валу электродвигателя — это мощность, которую электродвигатель передает на вал насоса.

Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.

Источник: https://eti.su/articles/elektricheskie-mashini/elektricheskie-mashini_1571.html

Расчет крутящего момента электродвигателя

Крутящий момент электродвигателя – это сила вращения его вала. Именно момент вращения определяет мощность Вашего двигателя. Измеряется в ньютонах на метр или в килограмм-силах на метр.

  • Номинальный – значение момента при стандартном режиме работы и стандартной номинальной нагрузке на двигатель.
  • Пусковой – это табличное значение. Сила вращения, которую в состоянии развивать электродвигатель при пуске. При подборе эл двигателя убедитесь, что данный параметр выше, чем статический момент Вашего оборудования — насоса, либо вентилятора и т.д. В противном случае электродвигатель не сможет запуститься, что чревато перегревом и перегоранием обмотки.
  • Максимальный – предельное значение, по достижении которого нагрузка уравновесит двигатель и остановит его.

Таблица крутящих моментов электродвигателей

В данной таблице собраны крутящие моменты наиболее распространенных в Украине электродвигателей АИР, а также требуемый при пуске – пусковой, максимально допустимый для данного типа электродвигателя – максимальный крутящий момент и момент инерции двигателей АИР (усилие важное при подборе электромагнитного тормоза, например)

Примечание: при расчете стоит учесть коэффициент проскальзывания асинхронного двигателя. Номинальное количество оборотов двигателя не совпадает с реальным. Точное количество оборотов вы сможете найти, зная маркировку, в таблице выше.

Для расчета крутящего момента электродвигателя онлайн введите значение мощности ЭД и реальную угловую скорость (количество оборотов в минуту)

После расчета крутящего момента, посмотрите схемы подключения асинхронных электродвигателей звездой и треугольником на сайте «Слобожанского завода»

Источник: https://slemz.com.ua/news/vashno/krutyashchiy-moment-elektrodvigatelya-raschet-formula-tablica

Основные параметры электродвигателя

Основные параметры электродвигателя

Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t — время, с

Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы.

Для вращательного движения

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

1 oz∙in∙s 2 = 0,007062 kg∙m 2 (кг∙м 2 )

Момент инерции связан с моментом силы следующим соотношением

Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

  • где η – коэффициент полезного действия электродвигателя,
  • P1 — подведенная мощность (электрическая), Вт,
  • P2 — полезная мощность (механическая), Вт
      При этом

потери в электродвигатели

    обусловлены:
  • электрическими потерями — в виде тепла в результате нагрева проводников с током;
  • магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
  • механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
  • дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики.

Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

  • где M – вращающий момент, Нм;
  • F – сила, Н;
  • r – радиус-вектор, м

  • где Pном – номинальная мощность двигателя, Вт,
  • nном — номинальная частота вращения, мин -1

Начальный пусковой момент — момент электродвигателя при пуске.

1 oz = 1/16 lb = 0,2780139 N (Н)
1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)
1 lb∙in = 0,112985 Nm (Нм)

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Области применения электродвигателей

Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии.

Источник: https://agregat.me/information/elektrodvigateli/osnovnye-parametry-elektrodvigatelya


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *