Правила с процентами

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Правила с процентами». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

Вычисление процентных долей от целого – одна из основных математических операций, к тому же часто используемая в повседневной жизни. Правило нахождения процентов от числа гласит о том, что для решения такой задачи его необходимо умножить на указанное в условиях количество %, после чего полученный результат разделить на 100. Также можно разделить число на 100, и полученный результат умножить на заданное количество %. Важно помнить ещё один тезис: если заданный условиями процент превышает 100%, то полученное числовое значение всегда больше исходного (заданного) – и наоборот.

Задачи на проценты (ЕГЭ – 2021)

Существует обратное правило нахождения числа по его проценту. Для того чтобы получить результат по такой математической операции (второму из трёх базовых типов задач на процентные вычисления) необходимо указанное в условиях число разделить на заданную процентную величину, после чего полученный результат умножить на 100. При этом первым действием вычисляется количество единиц исходной величины в 1%, а вторым – в целом (то есть в 100%). Если количество % превышает 100, то полученный результат всегда будет меньше числового значения, заданного условиями задачи – и наоборот.

Чтобы найти некоторое число процентов от данного числа, нужно данное число разделить на 100 и умножить на число процентов.

Задача 1. В том году в магазине к новому году купили 200 ёлок. В этом году количество купленных ёлок увеличилось на 120%. Сколько ёлок купили в этом году?

Решение: Сначала надо найти 120% от 200, для этого 200 надо разделить на 100, так мы найдём 1%, а затем полученный результат умножить на 120:

(200 : 100) · 120 = 240.

Число 240 — это 120% от 200. Значит, в этом году количество проданных ёлок увеличилось на 240 штук. То есть, количество ёлок, проданных в этом году равно:

200 + 240 = 440 (ёлок).

Ответ: В этом году купили 440 ёлок.

Задача 2. В коробке 28 конфет, 25% конфет с клубничной начинкой. Сколько конфет с клубничной начинкой в коробке?

Решение:

Чтобы перевести проценты в десятичную дробь, надо количество процентов разделить на 100.

Пример 1. Представить 25% в виде десятичной дроби.

Решение:

25 : 100 = 0,25.

Ответ: 25% — это 0,25.

Пример 2. Выразить 100% десятичной дробью.

Решение:

100 : 100 = 1.

Ответ: 100% — это 1.

Пример 3. Выразить 230% десятичной дробью.

Решение:

230 : 100 = 2,3.

Ответ: 230% — это 2,3.

Из данных примеров следует, что для перевода процентов в десятичные дроби, надо в числе, стоящем перед знаком %, перенести запятую на два знака влево.

Как вы поняли, проценты тесно связаны с обыкновенными и десятичными дробями. Поэтому стоит запомнить несколько простых равенств.

В повседневной жизни нужно знать о числовой связи дробей и процентов. Так, половина — 50%, четверть — 25%, три четверти — 75%, одна пятая — 20%, а три пятых — 60%.

Знание наизусть соотношений из таблицы внизу облегчит вам решение многих задач.

Откуда взялось это слово?

Все очень просто. Слово процент произошло от латинского per cent– на сотню, и означает оно «сотая доля» или «сотая часть». То есть один процент любого числа – это одна сотая этого числа.

Когда говорят, что число увеличилось на \( \displaystyle x\), это значит, что к числу надо прибавить \( \displaystyle x\).

Если же число уменьшилось на \( \displaystyle x\), это значит, что из числа надо вычесть \( \displaystyle x\).

Рассмотрим пример:

Цена холодильника в магазине за год увеличилась на \( \displaystyle 5\%\). Какой стала цена, если изначально холодильник стоил \( \displaystyle 12500\)р?

Решение:

Для начала определим, на сколько рублей изменилась (в данном случае – увеличилась) стоимость холодильника. По условию – на \( \displaystyle 5\%\). Но \( \displaystyle 5\%\) от чего? Конечно же, от самой начальной стоимости холодильника (\( \displaystyle 12500\) р). Получается, что нам нужно найти \( \displaystyle 5\%\) от \( \displaystyle 12500\)р:

\( \displaystyle 0,05\cdot 12500=625\).

Теперь мы знаем, что цена увеличилась на \( \displaystyle 625\)р. Остается только, согласно правилу, прибавить к начальной стоимости величину изменения:

Новая цена \( \displaystyle=12500+625=13125\) рублей.

Ответ: \( \displaystyle 13125.\)

Еще пример (постарайся решить самостоятельно):

Книга «Математика для чайников» в магазине стоит \( \displaystyle 360\)р. Во время акции все книги продаются со скидкой \( \displaystyle 15\%.\). Сколько теперь придется заплатить за эту книгу?

Решение:

Что такое скидка, ты наверняка знаешь? Скидка в \( \displaystyle 15\%.\) означает, что стоимость товара уменьшили на \( \displaystyle 15\%.\).

На сколько уменьшилась стоимость книги (в рублях)? Нужно найти \( \displaystyle 15\%.\) от начальной ее стоимости в \( \displaystyle 360\)р:

\( \displaystyle 0,15\cdot 360=54\).

Цена уменьшилась, значит нужно из начальной стоимости вычесть то, на сколько она уменьшилась:

Новая цена \( \displaystyle=360-54=306\) рублей.

Ответ: \( \displaystyle 306\).

Правда ведь просто?

Но есть способ сделать это решение еще проще и короче!

Рассмотрим пример:

Увеличьте число \( \displaystyle x\) на \( \displaystyle 23\%\).

Чему равны \( \displaystyle 23\%\) от \( \displaystyle x\)? Как мы уже выяснили раньше, это будет \( \displaystyle 0,23x\).

Теперь увеличим само число x на эту величину:

\( \displaystyle x+0,23x=1,23x\).

Получается, что в результате мы к десятичной записи \( \displaystyle 23\%\) прибавили \( \displaystyle 1\) и умножили на число \( \displaystyle x\). Обобщим это правило:

Пусть нам нужно увеличить число \( \displaystyle x\) на \( \displaystyle p\%\).

Сегодня ты получил очень много полезных навыков и заполнил пробелы, если такие были. И я очень горжусь тобой.

Ты сделал большой шаг уже тогда, когда решил сесть и разобраться наконец с этими процентами!

А теперь мы хотим услышать тебя. Напиши в комментариях внизу свое мнение о статье!

Понравилась? 🙂

Разобрался с тем, что такое проценты и как считать их? Когда понял, что хочешь научиться работать с ними?

Мы читаем каждый комментарий. И ответим на любой твой вопрос!

Успехов!

Легко и просто решаем задачи на проценты

Вы видите, что игра в Steam стоит 1 000 рублей, хотя раньше продавалась за 1 500 рублей. Вам интересно, сколько процентов составила скидка.

Разделите 1 500 на 100. Сместив запятую на две позиции влево, вы получите 15. Это 1% от старой цены.

Теперь новую цену разделите на размер 1%. 1 000 / 15 = 66,6666%.

100% – 66,6666% = 33,3333%.Такую скидку предоставил магазин.

В некоторых случаях можно воспользоваться простыми дробями. Например, 10% — это 1/10 числа. И чтобы узнать, сколько это будет в цифрах, достаточно разделить целое на 10.

  • 20% — 1/5, то есть нужно делить число на 5;
  • 25% — 1/4;
  • 50% — 1/2;
  • 12,5% — 1/8;
  • 75% — это 3/4. Значит, придётся разделить число на 4 и умножить на 3.

Давайте оглядимся по сторонам: значения в процентах указаны на упаковках с любыми продуктами. Значок процента «%» смотрит на нас с рекламных плакатов скидок и распродаж. В новостях проценты сразу бросаются в глаза, когда речь идет о повышении цен на товары или коммунальные услуги. Разве вы сможете расшифровать все эти послания, если не научитесь решать задачи с процентами? Но вы, конечно, научитесь – мы в вас верим.

А вот такая ситуация: вы купили что-нибудь через интернет и получили извещение от ближайшего почтового отделения. Или сами собираетесь послать подарок другу в другой город. Вам обязательно надо уметь разбираться с процентами, чтобы узнать, сколько денег почта захочет получить за свои услуги по пересылке.

Или возьмем банковские кредиты и ипотеку. Банки в договорах всегда пишут мелкими буквами всякие вещи, которые полезно понимать. Например, какой процент по кредиту придется заплатить банку кроме тех денег, которые вы у него «одолжили» и обязаны вернуть.

А самый близкий школьникам пример связан с ЕГЭ. Каждый год после экзаменов публикуют официальную статистику. В которой немало задействованы и проценты. И эти проценты имеют прямое отношение к будущим выпускникам. Например, процент ребят, сдавших экзамен по математике на «хорошо» и «отлично» косвенно говорит о том, сколько абитуриентов с высокими баллами могли подать документы в вузы на технические специальности. А еще на программирование, прикладную математику и т.п. Чем их больше, тем выше конкурс. Если сравнивать их результаты со своими оценками, можно прикинуть собственные шансы на поступление.

Самое очевидное определение: процент – это десятичная дробь. В жизни редко что-то можно сравнивать целиком, чаще приходится сравнивать разные части чего-то целого. Поэтому мы используем такие понятия, как половина (1/2), треть (1/3), четверть (1/4). Ну да, все так привыкли к слову «четверть» в школе, что забывают о его формальном значении – «четвертая часть учебного года». Сравнивать сотые доли удобнее всего – так появился процент (1/100): pro centum – «за сто» на латыни.

Все задачи по математике на проценты вертятся вокруг сравнения частей одного целого, определения, какую долю составляет часть от целого, нахождения целого исходя из величины его части и т.п.

Проценты можно записать со знакомым всем значком процента: 1%. Можно представить в виде десятичной дроби (или натурального числа). Для этого нужно разделить на 100: 0,01. Можно наоборот: выразить число в процентах. Тогда его следует умножить на 100%.

Памятка по теме «Проценты» ( 3 типа задач с процентами)

Раз мы уже договорились, что задачи на проценты – это задачи на дроби, такой тактики будем придерживаться и дальше.

Тип 1: Находим процент (дробь) от числа.

  • Задача. За месяц на предприятии изготовили 500 приборов. 20% изготовленных приборов не смогли пройти контроль качества. Сколько приборов не прошло контроль качества?
  • Решение. Нужно найти 20% от общего количества изготовленных приборов (500). 20% = 0,2. 500 * 0,2 = 100. 100 из общего количества изготовленных приборов контроль не прошло.

Тип 2: Находим число по его проценту (дроби).

  • Задача. Готовясь к экзамену, школьник решил 38 задач из пособия для самоподготовки. Что составляет 23% числа всех задач в пособии. Сколько всего задач собрано в этом пособии для самоподготовки?
  • Решение. Мы не знаем, сколько всего задача в пособии. Но зато нам известно, что 38 задач составляют 25% от общего их количества. Запишем 23% в виде дроби: 0,23. Далее нам следует известную нам часть целого разделить на ту долю, которую она составляет от всего целого: 38/0,25 = 38 * 100/25 = 152. Именно 152 задачи включили в этот сборник.

Тип 3: Находим процентное отношение двух чисел (часть от целого числа).

  • Задача. В классе 30 учеников. 14 из них – девочки. Сколько процентов девочек в классе?
  • Решение. Чтобы узнать, какой процент составляет одно число от другого, нужно то число, которое требуется найти, разделить на общее количество и умножить на 100%. Значит, 14/30*100% = 7/15*100% = 7*100%/15 = 47%.

Тип 4: Увеличиваем число на процент.

  • Задача. На прошлогоднем экзамене по математике 140 старшеклассников получили пятерки. В этом году число отличников выросло на 15%. Сколько человек получили пятерки за экзамен по математике в этом году?
  • Решение. Если некое число а увеличено на х%, то оно увеличилось в (1 + х /100) раз. Откуда а * (1 + х /100). Подставим в эту формулу данные нам по условию задачи цифры и получим ответ: 140 * (1 + 15/100) = 161.

Тип 5: Уменьшаем число на процент.

  • Задача. Год назад школу закончили 100 ребят. А в это году выпускников на 25 меньше. Сколько выпускников в этом году?
  • Решение. Если число а уменьшено на х% и при этом 0 ≤ х ≤ 100, то число уменьшено в (1 – х/100) раз. И нужное нам число находим по формуле а * (1 – х/100). Подставляем цифры из условия задачи и получаем ответ: 100 * (1 – 25/100) = 75.

Тип 6: Задачи на простые проценты.

  • Задача. Родители взяли в банке кредит 5000 рублей сроком на год под 15% ежемесячно. Сколько денег они заплатят банку через год?
  • Решение. Простые проценты называются так, потому что они начисляются многократно, но всякий раз к исходной сумме. Если обозначить исходную сумму как а, сумму, которая наращивается, как S, процентную ставку как х% и количество периодов начисления процента как у, то формулу можно записать так: S = а * (1 + у * х/100). Теперь подставим сюда цифры из условия задачи и узнаем, сколько денег родители заплатят банку: S = 5000 * (1 + 12 * 15/100) = 14000.

Тип 7: Задачи на сложные проценты.

  • Задача. На этот раз сумма кредита 25000 рублей, взятых под те же 15% сроком на 3 месяца. Снова надо узнать, сколько денег придется заплатить банку по истечении срока кредита.
  • Решение. Сложные проценты отличаются от простых тем, что процент много раз начисляется не к исходной сумме, а к сумме с уже начисленными раньше процентами. Пускай снова S – наращиваемая сумма, а – исходная, х% — процентная ставка, у – количество периодов начисления процента. В этом случае формула принимает вид: S = а * (1 + х/100)у. Подставляем цифры из условия: S = 25000 * (1 + 15/100)3 = 38021,875 – искомая сумма.

Кстати, простые задачи на проценты можно очень легко решать с помощью пропорции. Этот метод наглядный и дает такой же результат, так что выбирать можно каждому тот способ решения, который кажется проще. Давайте решим задачу №3 про класс и процент девочек в нем, составив пропорцию.

  • Решение. Обозначим искомый процент девочек в классе как х, общее количество учеников примем за 100%. Пропорция выглядит так:

30 – 100%
14 – х%

Перемножим крест накрест левую и правую части пропорции и получим, что 30* х = 14 * 100 («30 относится к х также, как 14 относится к 100»). Откуда найти х уже совсем несложно: х = 14 * 100/30 = 47%.

Рассмотрим четыре известных способа поиска процентов.

Деление числа на 100

При делении на 100 получается 1% от этого числа. Это правило можно использовать по-разному. Например, чтобы узнать процент от суммы, нужно умножить их на размер 1%. А чтобы перевести известное значение, следует разделить его на размер 1%. Этот метод отлично помогает в вопросе, как перевести целое число в проценты.

Представьте, что вы пришли в магазин за шоколадом. Обычно он стоит 250 рублей, но сегодня скидка 15%. Если у вас есть дисконтная карта магазина, шоколад обойдется вам в 225 рублей. Чем будет выгоднее воспользоваться: скидкой или картой?

Как решаем:

  • Переведем 15% в рубли:

250 : 100 = 2,5 — это 1% от стоимости шоколада,

значит 2,5 * 15 = 37,5 — это 15%.

  • 250 — 37,5 = 212,5.
  • 212,5 < 225.

Ответ: выгоднее воспользоваться скидкой 15%.

Пропорция — определенное соотношение частей между собой.

С помощью метода пропорции можно рассчитать любые %. Выглядит это так:

  • a : b = c : d.

Читается: а относится к b так, как с относится к d. Также важно помнить, что произведение крайних членов равно произведению средних. Чтобы узнать неизвестное из этого равенства, нужно решить простейшее уравнение.

Рассмотрим пример. На сколько выгодно покупать спортивную футболку за 1390 рублей при условии, что в магазине в честь дня всех влюбленных действует скидка 14%?

Как решаем:

  • Узнаем сколько стоит футболка сейчас в % соотношении:

100 — 14 = 86,

значит 1390 рублей это 86%.

  • Составим пропорцию:

1390 : 100 = х : 86,

х = 86 * (1390 : 100),

х = 1195,4.

  • 1390 — 1195,4 = 194,6.

Ответ: купить спортивную футболку выгоднее на 194,6 рубля.

Есть случаи, при которых можно использовать простые дроби.

  • 10% — десятая часть целого. Чтобы найти десять %, понадобится известное разделить на 10.
  • 20% — пятая часть целого. Чтобы вычислить двадцать % от известного, его нужно разделить на 5.
  • 25% — четверть целого. Чтобы вычислить двадцать пять %, понадобится известное разделить на 4.
  • 50% — половина целого. Чтобы вычислить половину, нужно известное разделить на 2.
  • 75% — три четверти целого. Чтобы вычислить семьдесят пять %, нужно известное значение разделить на 4 и умножить на 3.

Задача для тренировки. В черную пятницу вы нашли отличный пиджак со скидкой 25%. В обычный день он стоит 8500 рублей, но сейчас с собой есть только 6400 рублей. Хватит ли средств для покупки?

Как решаем:

  • 100 — 25 = 75,

значит нужно заплатить 75% от первоначальной цены.

  • используем правило соотношения чисел:

8500 : 4 * 3 = 6375.

Ответ: средств хватит, так как пиджак стоит 6375 рублей.

Как находить проценты от числа

Чему равно 30% от суммы чисел — 30 и 50?

(30+50) * 30 / 100 = 24

Что такое проценты в математике — определение и примеры …

Если что либо определить как одно целое и разделить его на 100 равных частей, то одна часть из полученных ста будет равняться 1 проценту или 1%.

Соответственно 100 частей по 1% равняется 100%.

100% — определяет что либо целое.

Например

Возьмём число 452 .

452 — 100%

1% — 452/100 = 4,52

30% — 1%*30 = 4,52*30 = 135,6

Еще раз подытожим всё выше сказанное.

Процент — это относительное значение, соответствующее одной сотой части чего либо целого.

Один процент, обозначается как 1%.

100% определяет всё целое.

300% — это в три раза больше чем одно целое принятое за 100%.

В математике за целое принимаются числа.

Процент — это сотая доля числа. Обозначается знаком «%». Является способом выразить число как часть целого.

100%

👧 👧 👧 👧 👧 👧 👧 👧

80% 👦 👦

20%

Предположим, на столе лежит один пирог. Его мы разделим на 100 одинаковых частей.

Один кусочек из ста — это сотая доля пирога, что есть

  • в виде обыкновенной дроби: 1 100,
  • в виде десятичной дроби: 0,01,
  • в процентах: 1% от пирога.

1 : 100 = 1 100 = 0,01 = 1%

25 кусочков — это четверть пирога или 25%.

25 : 100 = 25 100 = 1 4 = 0,25 = 25%

50 кусочков — это половина пирога или 50%.

50 : 100 = 50 100 = 1 2 = 0,5 = 50%

Уменьшить на 50% — значит уменьшить число в 2 раза.

100% чего-либо — 50% чего-либо = 50% чего-либо

Задачи на проценты: 3 способа решения с примерами

Весь пирог — это один пирог или 100%.

100 : 100 = 100 100 = 1 = 100%

Увеличить на 100% — значит увеличить число в 2 раза.

100% чего-либо + 100% чего-либо = 200% чего-либо

Один целый пирог и ещё половина другого — это полтора пирога или 150%.

150 : 100 = 150 100 = 150 100 = 11 2 = 1,5 = 150%

Два пирога — это 200%.

200 : 100 = 200 100 = 2 = 200%

200% от числа — значит увеличить число в 2 раза.

Увеличить на 200% — значит увеличить число в 3 раза.

100% чего-либо + 200% чего-либо = 300% чего-либо

Найти одну сотую часть от 1000: 1% = 1000 : 100 = 10 Взять 30 таких частей: 30% = 1% 30 = 10 30 = 300

Свойство

Нахождение числа a, если его p% равны b: разделить b на p ;
100

Пример

Найти число, 16% которого равны 70: a = 70 = 437,5 = 1 ;
0,16 5
Найти число 175% которого равны 90: a = 90 = 51 1 ;
1,75 4
Найти число 250% которого равны 100: a = 100 = 0,4.
2,5

Свойство Выражение в процентах частного двух чисел a и b (дроби):

a a • 100%
b b

Пример

0,27 = 27%;
2 = 0,4 = 40%;
5
15 : 20 = 15 • 100% = 75%.
20

Свойство 4

Свойство Сколько процентов составляет число a от числа b: разделить a на b,
полученную дробь записать в процентах:

a • 100%
b

Пример Сколько процентов составляет число 30 от 60?

30 = 0,5 = 50%.
60

Есть несколько способов найти требуемый процент от любого числа.

Первый способ состоит в делении нужной суммы на 100, после чего полученный результат умножается на % который необходимо определить.

Формула расчёта в данном случае выглядит так:

A / 100 * B =

В данной формуле A – это базовое число, из которого нужно извлечь долю.

B – процент, который необходимо высчитать в числовом выражении.

Например, в каком-либо магазине вам отдают товар, цена которого 500 рублей, за 70% его стоимости. Используя приведённую выше формулу, высчитываем, сколько нам необходимо заплатить в конечном итоге (или сколько будет 70% от 500 рублей):

500 / 100 * 70 = 350 рублей

Таким образом, мы сможем приобрести нужный товар за 350 рублей.

Второй способ состоит в умножении базового числа A на коофициент 0,B

Где А – это базовое число, а B – количество процентов, которые необходимо определить.

Формула имеет следующую форму:

A * 0,B =

В случае упомянутого выше примера с 70% стоимости от 500 высчитываем стоимость товара:

500 * 0,70 = 350

Третий способ состоит в умножении базового числа на количество процентов, после чего полученный результат делим на 100.

Формула выглядит следующим образом:

A * B / 100 =

В нашем случае это:

500 * 70 / 100 = 350

На калькуляторе нужная доля от числа находится ещё проще:

  1. Набираете на калькуляторе базовое число (А).
  2. Жмёте на умножить, вводите искомое число процентов.
  3. После чего жмёте на кнопку %, а затем на кнопку =. Калькулятор тот час же отобразит требуемый результат.

500*70% = (результат)

Также могут возникнуть ситуации, когда нужно высчитать процентное соотношение двух чисел. К примеру, какой процент число B составляет от числа А, на сколько процентов (B) вы выполнили свою работу от заданной нормы (A), на сколько (B) повысилась цена товара от первоначальной (A) и так далее.

Для определения такого результата существуют следующая формула:

B / A * 100 =

К примеру, нам нужно высчитать, какая доля от числа 500 составляет число 85.

Используя приведённую формулу, выполняем несложные арифметические операции:

85 / 500 * 100 = 17%

Таким образом, число 85 составляет 17% от 500.

Проверяем полученное число по формуле первого способа:

500 / 100 * 17 = 85.

Всё сошлось.

В некоторых случаях нам может быть известно какое-либо число и процент, которое оно составляет от базового числа. Нам необходимо определить значение. Например, нам может быть дана сумма 67, которое составляет 23% от базового числа. Каково же само базовое число?

Для решения этой задачи нам необходимо 67 разделить на 23 и умножить на 100. Формула вычисления процента выглядит следующим образом:

67 / B * 100 = A

Подставляем значения:

67 / 23 * 100 = 293, 31 (десятые после запятой можем округлить)

Проверяем полученный результат с помощью формулы из первого способа:

293, 31 / 100 * 23 = 67

Всё сошлось.

Что такое проценты в математике? Как решать задачи на проценты? Эти вопросы всплывают, увы, внезапно… Когда выпускник читает задание ЕГЭ. И ставят его в тупик. А зря. Это очень простые понятия.

Единственно, что нужно запомнить железно – что такое один процент. Это понятие — и есть главный ключ к решению задач на проценты, да и к работе с процентами вообще.

Один процент – это одна сотая часть какого-то числа. И всё. Нет больше никаких мудростей.

Резонный вопрос – а сотая часть какого числа? А вот того числа, о котором идёт речь в задании. Если там говорится о цене, один процент – это одна сотая часть цены. Если о скорости, один процент – это одна сотая часть скорости. И так далее. Понятно, что само число, о котором идёт речь, составляет всегда 100%. А если нет самого числа, то и проценты смысла не имеют…

Другое дело, что в сложных задачах само число так запрячут, что и не найдёшь. Но мы на сложное пока не замахиваемся. Разбираемся с процентами в математике.

Я не зря акцентирую слова один процент, одна сотая. Запомнив, что такое один процент, вы легко найдёте и два процента, и тридцать четыре, и семнадцать, и сто двадцать шесть! Сколько надо, столько и найдёте.

А это, между прочим, основное умение для решения задач на проценты.

Попробуем?

Давайте найдём 3% от 400. Сначала найдём один процент. Это будет одна сотая, т.е. 400/100 = 4. Один процент – это 4. А нам сколько процентов надо? Три. Вот и умножаем 4 на три. Получим 12. Всё. Три процента от 400 – это 12.

5% от 20 это будет 20 поделить на 100 (одна сотая – 1%), и умножить на пять (5%):

В ЕГЭ задачи на проценты очень популярны. От самых простых до сложных. В этом разделе мы работаем с простыми задачами. В простых задачах, как правило, нужно перейти от процентов к тем величинам, о которых идёт речь в задаче. К рублям, килограммам, секундам, метрам, и так далее. Или наоборот. Это мы уже умеем. После этого задача становится понятной и легко решается. Не верите? Смотрите сами.
Пусть у нас есть такая задачка.

«Проезд на автобусе стоит 14 рублей. В дни школьных каникул для учащихся ввели скидку 25%. Сколько стоит проезд на автобусе в дни школьных каникул?»

Как решать? Если мы узнаем, сколько 25% в рублях – то и решать-то нечего. Отнимем скидку от исходной цены – и все дела!

Но мы уже умеем это узнавать! Сколько будет один процент от 14 рублей? Одна сотая часть. То есть 14/100 = 0,14 рубля. А таких процентов у нас 25. Вот и умножим 0,14 рубля на 25. Получим 3,5 рублей. Вот и всё. Величину скидки в рублях мы установили, остаётся узнать новую стоимость проезда:

14 – 3,5 = 10,5.

Десять с половиной рублей. Это ответ.

Как только от процентов перешли к рублям, всё стало просто и понятно. Это общий подход к решению задач на проценты.

Понятное дело, не все задачи одинаково элементарны. Есть и посложнее. Подумаешь! Мы и их сейчас порешаем. Сложность в том, что всё наоборот. Нам даны какие-то величины, а найти надо проценты. Например, такая задача:

«Раньше Вася решал правильно две задачи на проценты из двадцати. После изучения темы на одном полезном сайте, Вася стал решать правильно 16 задач из 20. На сколько процентов поумнел Вася? За стопроцентный ум считаем 20 решённых задач.»

Раз вопрос про проценты (а не рубли, килограммы, секунды и т.д.), то и переходим к процентам. Узнаем, сколько процентов Вася решал до поумнения, сколько процентов после – и дело в шляпе!

Считаем. Две задачки из 20 – это сколько процентов? 2 меньше 20 в 10 раз, правильно? Значит, количество задачек в процентах будет в 10 раз меньше, чем 100%. То есть 100/10 = 10.

10%. Да, немного решал Вася… На ЕГЭ делать нечего. Но вот он поумнел, и решает 16 задач из 20. Считаем, сколько это будет процентов? Во сколько раз 16 меньше 20? Навскидку и не скажешь… Придётся делить.

  • Требуется найти 25% от 80 кг. Необходимо разделить 80 на 100 и умножить на 25 ( 80 кг / 100% * 25% = 20 кг ).
  • Нужно найти 15% от 300 руб. Делим 300 на 100 и умножаем на 15 (получаем 45 руб).
  • Вычислить 50% от 500 м. Пятьдесят процентов — это по сути половина от целого числа (от 100%), поэтому можно 500 просто разделить на 2 (выходит 250 метров).
  • Найти 160% от числа 50. Нужно разделить 50 на 100 и умножить на 160 ( 50 / 100% * 160% = 80 ).
  1. Сколько будет 20% от числа 40? Ответ: «8».
  2. Найти 10 процентов от числа 60? Ответ: «6».
  3. Сколько составляет 1 процент от числа 2? Ответ: «0.02».
  4. Вычислить 5 процентов от числа 4? Ответ: «0.2».
  5. Сколько будет 30% от числа 25? Ответ: «7.5».
  6. Сколько составит 40 процентов от 60? Ответ: «24».

Методика решения задач на проценты

  • Найти указанный процент от заданного числа.
  • Найти число по заданному другому числу и его величине в процентах от искомого числа.
  • Найти процентное выражение одного числа от другого.
  • Найти число на заданный процент большее (меньшее) исходного числа.
  • Найти число, зная значение числа большего (меньшего) от исходного на заданный процент.
  • Найти сложные проценты.

Метод решения задач с процентами:

Все соотношения и формулы, полученные для решения задач с процентами, выводятся из пропорции

Данные задачи на проценты можно записать в виде следующих соотношений:

все — 100%
часть — часть в %

которые можно записать в виде пропорции

все = 100%
часть часть в %

Используя эту пропорцию можно получить формулы для решения основных типов задач на проценты.

  • Формула вычисления процента от заданного числа.
    Если дано число A и необходимо вычислить число B, составляющее P процентов от A, то
    B = A · P
    100%
  • Формула вычисления числа по его проценту.
    Если дано число B которое составляет P процентов от числа A и необходимо найти значение числа A, то
    A = B · 100%
    P
  • Формула вычисления процентного выражение одного числа от другого.
    Если дано два числа A и B и необходимо определить, какой процент составляет число B от числа A, то
    P = B · 100%
    A
  • Формула вычисления числа, которое больше исходного числа на заданный процент.
    Если дано число A и необходимо найти число B, которое на P процентов больше числа A, то
    B = A(1 + P )
    100%

    Пример 1. Найти число B составляющее 5% от числа 20.
    Решение.

    B = 20 · 5% = 1
    100%

    Ответ: B = 1.

    Пример 2. Найти сколько процентов составляет число 35 от числа 20.
    Решение.

    35 · 100% = 175%
    20

    Ответ: 175%.
    Пример 3. Найти число, которое на 15% меньше чем 20.
    Решение.

    20(1 — 15% ) = 20 · 0.85 = 17
    100%

    Ответ: 17.
    Пример 4. Найти прибыль от 30000 рублей положенных на депозит на 3 года под 10% годовых, если в конце каждого года проценты добавлялись к депозитному вкладу.
    Решение. Используем формулу для вычисления сложных процентов:

    B = 30000(1 + 10% )3 = 30000 · 1.13 = 39930
    100%

    прибыль равна

    39930 — 30000 = 9930

    Ответ: прибыль 9930 рублей.

    Пример 1. Найти число B составляющее 15% от числа 30.

    Решение.

    30 соответствует 100%
    x соответствует 15%

    Запишем пропорцию

    30 = 100%
    x 15%

    решим полученное уравнение

    x

    =

    30 · 15% = 4.5
    100%

    Ответ: 15% от 30 равно 4.5.

    Пример 2. Найти сколько процентов составляет число 35 от числа 20.

    Решение.

    Вы заходите в супермаркет и видите акцию на кофе. Его обычная цена — 458 рублей, сейчас действует скидка 7%. Но у вас есть карта магазина, и по ней пачка обойдётся в 417 рублей.

    Чтобы понять, какой вариант выгоднее, надо перевести 7% в рубли.

    Разделите 458 на 100. Для этого нужно просто сместить запятую, отделяющую целую часть числа от дробной, на две позиции влево. 1% равен 4,58 рубля.

    Умножьте 4,58 на 7, и вы получите 32,06 рубля.

    Теперь остаётся отнять от обычной цены 32,06 рубля. По акции кофе обойдётся в 425,94 рубля. Значит, выгоднее купить его по карте.

    Что такое процент? Формула процентов. Проценты — как считать?

    Вы видите, что игра в Steam стоит 1 000 рублей, хотя раньше продавалась за 1 500 рублей. Вам интересно, сколько процентов составила скидка.

    Разделите 1 500 на 100. Сместив запятую на две позиции влево, вы получите 15. Это 1% от старой цены.

    Теперь новую цену разделите на размер 1%. 1 000 / 15 = 66,6666%.

    100% – 66,6666% = 33,3333%.Такую скидку предоставил магазин.

    Допустим, вы кладёте на депозит 530 тысяч рублей на 12 месяцев. Процентная ставка составляет 5%, капитализации не предусмотрено. Вы хотите узнать, сколько денег заберёте через год.

    В первую очередь надо вычислить 10% от суммы. Разделите её на 10, передвинув запятую влево на один знак. Вы получите 53 тысячи.

    Чтобы узнать, сколько составляют 5%, разделите результат на 2. Это 26,5 тысячи.

    Если бы в примере речь шла о 30%, нужно было бы умножить 53 на 3. Для расчёта 25% пришлось бы умножить 53 на 2 и прибавить 26,5.

    В любом случае такими крупными числами оперировать довольно просто.

    Составлять пропорции — одно из наиболее полезных умений, которому вас научили в школе. С его помощью можно посчитать любые проценты. Выглядит пропорция так:

    сумма, составляющая 100% : 100% = часть суммы : доля в процентном соотношении.

    Или можно записать её так: a : b = c : d.

    Обычно пропорция читается как «а относится к b так же, как с относится к d». Произведение крайних членов пропорции равно произведению её средних членов. Чтобы узнать неизвестное число из этого равенства, нужно решить простейшее уравнение.

    В некоторых случаях можно воспользоваться простыми дробями. Например, 10% — это 1/10 числа. И чтобы узнать, сколько это будет в цифрах, достаточно разделить целое на 10.

    • 20% — 1/5, то есть нужно делить число на 5;
    • 25% — 1/4;
    • 50% — 1/2;
    • 12,5% — 1/8;
    • 75% — это 3/4. Значит, придётся разделить число на 4 и умножить на 3.

    Если без калькулятора вам жизнь не мила, все вычисления можно делать с его помощью. А можно поступить ещё проще.

    • Чтобы посчитать проценты от суммы, введите число, равное 100%, знак умножения, затем нужный процент и знак %. Для примера с кофе вычисления будут выглядеть так: 458 × 7%.
    • Чтобы узнать сумму за вычетом процентов, введите число, равное 100%, минус, размер процентной доли и знак %: 458 – 7%.
    • Аналогично можно складывать, как в примере с депозитом: 530 000 + 5%.


    Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *